Thermally driven exchange flow between open water and an aquatic canopy

نویسندگان

  • XUEYAN ZHANG
  • HEIDI M. NEPF
چکیده

Differential solar heating can result from shading by rooted emergent aquatic plants, producing a temperature difference between vegetated and unvegetated regions of a surface water body. This temperature difference will promote an exchange flow between the vegetation and open water. Drag associated with the submerged portion of the plants modifies this exchange, specifically, changing the dominant velocity scale. Scaling analysis predicts several distinct flow regimes, including inertia-dominated, drag-dominated and energy-limiting regimes. After a constant heat source is initiated, the flow is initially inertial, but quickly transitions to the drag-dominated regime. The energy-limiting regime is not likely to occur in the presence of rooted vegetation. Laboratory experiments describe the exchange flow and confirm the scaling analysis. Particle Imaging Velocimetry (PIV) was used to quantify the velocity field. Once the exchange flow enters the drag-dominated regime, the intrusion velocity uV is steady. The intrusion velocity decreases with increasing density of vegetation. The thickness of the intruding layer is set by the length scale of light penetration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density-driven exchange flow between open water and an aquatic canopy

Density-driven exchange flow between open water and an aquatic canopy. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] Differences in water density can drive a...

متن کامل

Exchange flow between a canopy and open water

This paper theoretically and experimentally investigates the exchange flow due to temperature differences between open water and a canopy of aquatic plants. A numerical model is used to study the interfacial shape, frontal velocity and total volumetric exchange, and their dependence on a dimensionless vegetation drag parameter. The numerical predictions are consistent with the laboratory measur...

متن کامل

Exchange flow between open water and floating vegetation

This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating vegetation. The partial-depth porous obstruction represents the root layer, which does not penetrate to the bed. Initially, a vertical wall separates the two regions, with fluid of...

متن کامل

Retention time and dispersion associated with submerged aquatic canopies

Citation Nepf, H. et al. " Retention time and dispersion associated with submerged aquatic canopies. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] The shear ...

متن کامل

An Analytical Approach to the Effect of Viscous Dissipation on Shear-Driven Flow between two parallel plates with Constant Heat Flux Boundary Conditions

An investigation has been made to analyze the effects of viscous dissipation on the heat transfer characteristics for both hydro-dynamically and thermally fully developed, laminar shear driven flow between two infinitely long parallel plates, where the upper plate is moving in an axial direction at a constant speed. On the basis of some routine assumptions made in the literature, a close form a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009